Ай Дайджест

Свежая выжимка ml и AI статей - каждый день

Подборка статей по тегу "hallucination"

Введение в VL-RewardBench: Новый стандарт для оценки моделей вознаграждения в области зрения и языка

Модели вознаграждения на основе визуально-языкового генеративного подхода (VL-GenRMs) играют ключевую роль в согласовании и оценке многомодальных систем ИИ, однако их собственная оценка остается недостаточно исследованной. Текущие методы оценки в основном полагаются на метки предпочтений, аннотированные ИИ, из традиционных задач VL, что может вносить предвзятость и часто не способно эффективно проверять модели на передовом уровне. Чтобы преодолеть эти ограничения, мы представляем VL-RewardBench, комплексный бенчмарк, охватывающий общие мультимодальные запросы, обнаружение визуальных галлюцинаций и сложные задачи по рассуждению. С помощью нашего пайплайна аннотации с участием ИИ, который сочетает выбор образцов с человеческой верификацией, мы собрали 1250 высококачественных примеров, специально разработанных для выявления ограничений моделей. Комплексная оценка 16 ведущих крупных визуально-языковых моделей показала, что VL-RewardBench является эффективной тестовой площадкой, где даже GPT-4o достигает только 65,4% точности, а передовые открытые модели, такие как Qwen2-VL-72B, едва превышают уровень случайного угадывания. Важно отметить, что результаты на VL-RewardBench сильно коррелируют (корреляция Пирсона > 0.9) с точностью MMMU-Pro при использовании отбора Best-of-N с VL-GenRMs. Экспериментальный анализ выявил три ключевых инсайта для улучшения VL-GenRMs: (i) модели в основном терпят неудачу на базовых задачах визуального восприятия, а не на задачах рассуждения; (ii) преимущества масштабирования в момент вывода значительно различаются в зависимости от емкости модели; и (iii) обучение VL-GenRMs для оценки значительно повышает способность к судейству (+14,7% точности для VL-GenRM на 7B). Мы считаем, что VL-RewardBench вместе с полученными экспериментальными данными станет ценным ресурсом для развития VL-GenRMs.

Путь к репликации O1: Простая дистилляция и её последствия

Эта статья представляет собой критический анализ текущих подходов к репликации возможностей модели O1 от OpenAI, с особым акцентом на широко распространённое, но часто не раскрываемое использование техник дистилляции знаний. В то время как наша предыдущая работа исследовала фундаментальный технический путь к репликации O1, данное исследование показывает, как простая дистилляция с использованием API O1, в сочетании с контролируемой настройкой, может достигать превосходных результатов в сложных задачах математического рассуждения. Путём обширных экспериментов мы показываем, что базовая модель, настроенная на десятки тысяч образцов, дистиллированных из O1, превосходит предварительную версию O1 на Американском пригласительном математическом экзамене (AIME) с минимальной технической сложностью. Более того, наше исследование выходит за рамки математического рассуждения и исследует возможности обобщения моделей, дистиллированных из O1, на разнообразные задачи: галлюцинации, безопасность и вопросы и ответы в открытом домене. Отметим, что несмотря на обучение только на данных по решению математических задач, наши модели продемонстрировали сильное обобщение на задачи открытого QA и стали значительно менее подвержены подхалимству после настройки. Мы намеренно публикуем эти результаты для содействия прозрачности в исследованиях ИИ и для оспаривания текущей тенденции к скрытию технических утверждений в этой области. Наша работа включает: (1) детальное техническое изложение процесса дистилляции и его эффективности, (2) всеобъемлющую рамку бенчмарков для оценки и категоризации попыток репликации O1 на основе их технической прозрачности и воспроизводимости, (3) критическое обсуждение ограничений и потенциальных рисков чрезмерной зависимости от подходов дистилляции. Наш анализ завершается важным горьким уроком: хотя стремление к созданию более способных систем ИИ важно, развитие исследователей, опирающихся на мышление с первых принципов, является первостепенным.

Открытие новых горизонтов в научной литературе с помощью OpenScholar

Научный прогресс зависит от способности исследователей синтезировать нарастающий объем литературы. Могут ли крупные языковые модели (LM) помочь ученым в этой задаче? Мы представляем OpenScholar, специализированную модель с дополнительной функцией извлечения информации, которая отвечает на научные запросы, определяя релевантные отрывки из 45 миллионов открытых статей и формируя ответы, подкрепленные цитатами. Для оценки OpenScholar мы разработали ScholarQABench, первый крупномасштабный бенчмарк для поиска литературы в нескольких областях, включающий 2967 запросов, написанных экспертами, и 208 длинных ответов в области информатики, физики, нейронаук и биомедицины. На ScholarQABench OpenScholar-8B превосходит GPT-4o на 5% и PaperQA2 на 7% по правильности, несмотря на то, что это меньшая и открытая модель. В то время как GPT-4o фальсифицирует цитаты в 78-90% случаев, OpenScholar достигает точности цитирования на уровне человеческих экспертов. Система хранения данных, извлекатель и петля самокоррекции OpenScholar также улучшают стандартные модели LM: например, OpenScholar-GPT4o повышает правильность ответов GPT-4o на 12%. В оценках, проведенных экспертами, предпочтение OpenScholar-8B и OpenScholar-GPT4o было отдано в 51% и 70% случаев соответственно, по сравнению с 32% у GPT-4o. Мы делаем открытыми все наши коды, модели, хранилище данных, данные и демонстрационную версию.

Понимает ли модель этот объект? Осведомлённость и галлюцинации в языковых моделях

Галлюцинации в крупных языковых моделях являются распространенной проблемой, однако механизмы, лежащие в основе того, будут ли модели галлюцинировать, плохо поняты, что ограничивает нашу способность решать эту проблему. Используя разреженные автокодировщики как инструмент интерпретации, мы обнаруживаем, что ключевой частью этих механизмов является распознавание сущностей, где модель определяет, является ли сущность той, о которой она может вспомнить факты. Разреженные автокодировщики выявляют значимые направления в пространстве представлений, которые определяют, узнает ли модель сущность, например, обнаруживая, что она не знает о спортсмене или фильме. Это предполагает, что модели могут обладать самоосведомленностью: внутренними представлениями о собственных возможностях. Эти направления имеют причинно-следственное значение: они способны направлять модель на отказ отвечать на вопросы о известных сущностях или на галлюцинирование атрибутов неизвестных сущностей, когда она в противном случае отказалась бы. Мы демонстрируем, что несмотря на то, что разреженные автокодировщики обучены на базовой модели, эти направления оказывают причинно-следственное влияние на поведение модели чата, отказываясь отвечать, что предполагает, что дообучение чата переиспользовало этот существующий механизм. Более того, мы предоставляем первоначальное исследование механистической роли этих направлений в модели, обнаруживая, что они нарушают внимание последующих голов, которые обычно перемещают атрибуты сущностей к последнему токену.

Проблема галлюцинаций в моделях генерации видео из текста

Последние достижения в области крупномасштабных мультимодальных моделей (LMMs) расширили их возможности до понимания видео. В частности, модели текст-в-видео (T2V) добились значительного прогресса в качестве, понимании и продолжительности, превосходно создавая видео из простых текстовых запросов. Тем не менее, они все еще часто генерируют содержание с галлюцинациями, что явно указывает на то, что видео создано ИИ. Мы представляем ViBe: крупномасштабный бенчмарк текст-в-видео для видео с галлюцинациями, созданными моделями T2V. Мы выделяем пять основных типов галлюцинаций: исчезновение субъекта, численная изменчивость, временная диспропорция, ошибка пропуска и физическая несообразность. С использованием 10 открытых моделей T2V, мы разработали первый крупномасштабный набор данных видео с галлюцинациями, включающий 3,782 видео, аннотированных людьми по этим пяти категориям. ViBe предоставляет уникальный ресурс для оценки надежности моделей T2V и служит основой для улучшения обнаружения и смягчения галлюцинаций в генерации видео. Мы установили классификацию как базовую линию и представили различные конфигурации ансамблевых классификаторов, причем комбинация TimeSFormer + CNN показала наилучшие результаты, достигнув точности 0.345 и F1-меры 0.342. Этот бенчмарк направлен на стимулирование разработки надежных моделей T2V, которые создают видео, более точно соответствующие входным запросам.

ReCapture: Генерация Видео с Новыми Траекториями Камеры для Пользовательских Видео

В последнее время прорывы в моделировании видео позволили контролировать траектории камеры в генерируемых видео. Однако эти методы нельзя напрямую применять к видео, предоставленным пользователями, которые не были сгенерированы видеомоделью. В данной статье мы представляем ReCapture, метод для создания новых видео с новыми траекториями камеры из одного видео, предоставленного пользователем. Наш метод позволяет нам перегенерировать эталонное видео, сохраняя все его существующие сценические движения, с совершенно разных углов и с кинематографическими движениями камеры. Примечательно, что с помощью нашего метода мы также можем правдоподобно воспроизвести части сцены, которые не были видны в эталонном видео. Наш метод работает следующим образом: (1) генерируется шумное опорное видео с новой траекторией камеры с использованием моделей многовидовой диффузии или рендеринга на основе глубины облака точек, а затем (2) опорное видео перегенерируется в чистое и временно последовательное видео с измененным углом обзора с помощью нашей предложенной техники тонкой настройки видео с маскированием.