Ай Дайджест

Свежая выжимка ml и AI статей - каждый день

Подборка статей по тегу "trajectory"

ObjCtrl-2.5D: Объектное управление без обучения с использованием поз камеры

Это исследование направлено на достижение более точного и универсального контроля объектов в генерации «изображение-видео» (I2V). Текущие методы обычно представляют пространственное движение целевых объектов с помощью 2D-траекторий, что часто не удается уловить намерение пользователя и часто приводит к ненатуральным результатам. Чтобы улучшить контроль, мы представляем ObjCtrl-2.5D, подход к контролю объектов без тренировки, который использует 3D-траекторию, расширенную из 2D-траектории с глубинной информацией, в качестве управляющего сигнала. Моделируя движение объекта как движение камеры, ObjCtrl-2.5D представляет 3D-траекторию как последовательность поз камеры, что позволяет управлять движением объекта с помощью существующей модели управления движением камеры для генерации I2V (CMC-I2V) без обучения. Чтобы адаптировать модель CMC-I2V, изначально предназначенную для глобального контроля движения, для обработки локального движения объектов, мы вводим модуль для изоляции целевого объекта от фона, что позволяет независимый локальный контроль. В дополнение мы разрабатываем эффективный способ достижения более точного контроля объектов, деля низкочастотные искаженные латентные данные в области объекта по кадрам. Широкие эксперименты показывают, что ObjCtrl-2.5D значительно улучшает точность контроля объектов по сравнению с методами без тренировки и предлагает более разнообразные возможности управления, чем подходы на основе обучения с использованием 2D-траекторий, позволяя создавать сложные эффекты, такие как вращение объектов. Код и результаты доступны на https://wzhouxiff.github.io/projects/ObjCtrl-2.5D/.

Траектория внимания для детального управления движением в видео

Недавние достижения в генерации видео были существенно обусловлены моделями видео-диффузии, при этом контроль движения камеры стал критической задачей при создании визуального контента, адаптированного к просмотру. В этой статье представлено внимание к траектории, новый подход, который выполняет внимание вдоль доступных пиксельных траекторий для тонкой настройки контроля движения камеры. В отличие от существующих методов, которые часто дают неточные результаты или игнорируют временные корреляции, наш подход обладает более сильным индуктивным уклоном, который бесшовно внедряет информацию о траекториях в процесс генерации видео. Важно, что наш подход моделирует внимание к траектории как вспомогательную ветвь наряду с традиционным временным вниманием. Этот дизайн позволяет оригинальному временно́му вниманию и вниманию к траектории работать в синергии, обеспечивая как точный контроль движения, так и возможность генерации нового контента, что критично, когда траектория доступна только частично. Эксперименты по контролю движения камеры для изображений и видео демонстрируют значительные улучшения в точности и долгосрочной согласованности, сохраняя при этом высокое качество генерации. Более того, мы показываем, что наш подход можно расширить на другие задачи контроля движения видео, такие как редактирование видео с гидом по первому кадру, где он превосходно справляется с поддержанием согласованности контента на больших пространственных и временных интервалах.

ReCapture: Генерация Видео с Новыми Траекториями Камеры для Пользовательских Видео

В последнее время прорывы в моделировании видео позволили контролировать траектории камеры в генерируемых видео. Однако эти методы нельзя напрямую применять к видео, предоставленным пользователями, которые не были сгенерированы видеомоделью. В данной статье мы представляем ReCapture, метод для создания новых видео с новыми траекториями камеры из одного видео, предоставленного пользователем. Наш метод позволяет нам перегенерировать эталонное видео, сохраняя все его существующие сценические движения, с совершенно разных углов и с кинематографическими движениями камеры. Примечательно, что с помощью нашего метода мы также можем правдоподобно воспроизвести части сцены, которые не были видны в эталонном видео. Наш метод работает следующим образом: (1) генерируется шумное опорное видео с новой траекторией камеры с использованием моделей многовидовой диффузии или рендеринга на основе глубины облака точек, а затем (2) опорное видео перегенерируется в чистое и временно последовательное видео с измененным углом обзора с помощью нашей предложенной техники тонкой настройки видео с маскированием.

Генерирование 3D и 4D сцен с Gen-X-D: От теории к практике

Недавние достижения в области генерации двумерных визуальных изображений были весьма успешными. Однако, создание 3D и 4D объектов остается сложной задачей в реальных приложениях из-за отсутствия масштабных 4D данных и эффективного дизайна моделей. В данной статье мы предлагаем совместно исследовать общую генерацию 3D и 4D объектов, используя движения камеры и объектов, которые часто наблюдаются в повседневной жизни. Из-за недостатка реальных 4D данных в сообществе, мы сначала предлагаем пайплайн курирования данных для получения позиций камеры и интенсивности движения объектов из видео. На основе этого пайплайна мы представляем крупномасштабный набор данных реальных 4D сцен: CamVid-30K. Используя все 3D и 4D данные, мы разрабатываем нашу платформу, GenXD, которая позволяет создавать любую 3D или 4D сцену. Мы вводим мультивью-темпоральные модули, которые разделяют движения камеры и объектов, чтобы беспрепятственно учиться на обоих типах данных. Кроме того, GenXD использует маскированные латентные условия для поддержки различных условий визуализации. GenXD способен генерировать видео, которые следуют траектории камеры, а также согласованные 3D виды, которые могут быть преобразованы в 3D представления. Мы проводим обширные оценки на различных реальных и синтетических наборах данных, демонстрируя эффективность и универсальность GenXD по сравнению с предыдущими методами генерации 3D и 4D объектов.